Polish groupoids and functorial complexity

Author:

Lupini Martino

Abstract

We introduce and study the notion of functorial Borel complexity for Polish groupoids. Such a notion aims to measure the complexity of classifying the objects of a category in a constructive and functorial way. In the particular case of principal groupoids such a notion coincides with the usual Borel complexity of equivalence relations. Our main result is that on one hand for Polish groupoids with an essentially treeable orbit equivalence relation, functorial Borel complexity coincides with the Borel complexity of the associated orbit equivalence relation. On the other hand, for every countable equivalence relation E E that is not treeable there are Polish groupoids with different functorial Borel complexity both having E E as orbit equivalence relation. In order to obtain such a conclusion we generalize some fundamental results about the descriptive set theory of Polish group actions to actions of Polish groupoids, answering a question of Arlan Ramsay. These include the Becker-Kechris results on Polishability of Borel G G -spaces, existence of universal Borel G G -spaces, and characterization of Borel G G -spaces with Borel orbit equivalence relations.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference51 articles.

1. Claire Anantharaman-Delaroche, Old and new about treeability and the Haagerup property for measured groupoids, arXiv:1105.5961 (2011).

2. Martin Argerami, Samuel Coskey, Matthew Kennedy, Mehrdad Kalantar, Martino Lupini, and Marcin Sabok, The classification problem for finitely generated operator systems and spaces, arXiv:1411.0512 (2014).

3. London Mathematical Society Lecture Note Series;Becker, Howard,1996

4. Model theory for metric structures;Ben Yaacov, Itaï,2008

5. Itaï Ben Yaacov, Andre Nies, and Todor Tsankov, A Lopez-Escobar theorem for continuous logic, arXiv:1407.7102 (2014).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3