On local path behavior of Surgailis multifractional processes

Author:

Ayache A.,Bouly F.

Abstract

Multifractional processes are stochastic processes with non-stationary increments whose local regularity and self-similarity properties change from point to point. The paradigmatic example of them is the classical Multifractional Brownian Motion (MBM) { M ( t ) } t R \{{\mathcal {M}}(t)\}_{t\in \mathbb {R}} of Benassi, Jaffard, Lévy Véhel, Peltier and Roux, which was constructed in the mid 90’s just by replacing the constant Hurst parameter H {\mathcal {H}} of the well-known Fractional Brownian Motion by a deterministic function H ( t ) {\mathcal {H}}(t) having some smoothness. More than 10 years later, using a different construction method, which basically relied on nonhomogeneous fractional integration and differentiation operators, Surgailis introduced two non-classical Gaussian multifactional processes denoted by { X ( t ) } t R \{X(t)\}_{t\in \mathbb {R}} and { Y ( t ) } t R \{Y(t)\}_{t\in \mathbb {R}} .

In our article, under a rather weak condition on the functional parameter H ( ) {\mathcal {H}}(\cdot ) , we show that { M ( t ) } t R \{{\mathcal {M}}(t)\}_{t\in \mathbb {R}} and { X ( t ) } t R \{X(t)\}_{t\in \mathbb {R}} as well as { M ( t ) } t R \{{\mathcal {M}}(t)\}_{t\in \mathbb {R}} and { Y ( t ) } t R \{Y(t)\}_{t\in \mathbb {R}} only differ by a part which is locally more regular than { M ( t ) } t R \{{\mathcal {M}}(t)\}_{t\in \mathbb {R}} itself. On one hand this result implies that the two non-classical multifractional processes { X ( t ) } t R \{X(t)\}_{t\in \mathbb {R}} and { Y ( t ) } t R \{Y(t)\}_{t\in \mathbb {R}} have exactly the same local path behavior as that of the classical MBM { M ( t ) } t R \{{\mathcal {M}}(t)\}_{t\in \mathbb {R}} . On the other hand it allows to obtain from discrete realizations of { X ( t ) } t R \{X(t)\}_{t\in \mathbb {R}} and { Y ( t ) } t R \{Y(t)\}_{t\in \mathbb {R}} strongly consistent statistical estimators for values of their functional parameter.

Publisher

American Mathematical Society (AMS)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference16 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifractional Hermite processes: Definition and first properties;Stochastic Processes and their Applications;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3