Realization spaces of 4-polytopes are universal

Author:

Richter-Gebert Jürgen,Ziegler Günter M.

Abstract

Let P R d {P \subset \mathbb {R}^{d}} be a d-dimensional polytope. The realization space of P is the space of all polytopes P R d P \subset \mathbb {R}^{d} that are combinatorially equivalent to P, modulo affine transformations. We report on work by the first author, which shows that realization spaces of 4-dimensional polytopes can be "arbitrarily bad": namely, for every primary semialgebraic set V defined over Z {\mathbb {Z}} , there is a 4-polytope P ( V ) {P(V)} whose realization space is "stably equivalent" to V. This implies that the realization space of a 4-polytope can have the homotopy type of an arbitrary finite simplicial complex, and that all algebraic numbers are needed to realize all 4-polytopes. The proof is constructive. These results sharply contrast the 3-dimensional case, where realization spaces are contractible and all polytopes are realizable with integral coordinates (Steinitz’s Theorem). No similar universality result was previously known in any fixed dimension.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. Two “simple” 3-spheres;Barnette, D. W.;Discrete Math.,1987

2. Preassigning the shape of a face;Barnette, David;Pacific J. Math.,1970

3. Lawrence polytopes;Bayer, Margaret;Canad. J. Math.,1990

4. Polarity and inner products in oriented matroids;Billera, Louis J.;European J. Combin.,1984

5. Encyclopedia of Mathematics and its Applications;Björner, Anders,1993

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Complexity of the Hausdorff Distance;Discrete & Computational Geometry;2023-09-27

2. Further $$\exists {\mathbb {R}}$$-Complete Problems with PSD Matrix Factorizations;Foundations of Computational Mathematics;2023-06-22

3. The Complexity of Recognizing Geometric Hypergraphs;Lecture Notes in Computer Science;2023

4. Completeness for the Complexity Class $$\forall \exists \mathbb {R}$$ and Area-Universality;Discrete & Computational Geometry;2022-05-18

5. Combining Realization Space Models of Polytopes;Discrete & Computational Geometry;2022-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3