Intersection forms of spin 4-manifolds and the pin(2)-equivariant Mahowald invariant

Author:

Hopkins Michael,Lin Jianfeng,Shi XiaoLin Danny,Xu Zhouli

Abstract

In studying the “11/8-Conjecture” on the Geography Problem in 4-dimensional topology, Furuta proposed a question on the existence of Pin ( 2 ) \operatorname {Pin}(2) -equivariant stable maps between certain representation spheres. A precise answer of Furuta’s problem was later conjectured by Jones. In this paper, we completely resolve Jones conjecture by analyzing the Pin ( 2 ) \operatorname {Pin}(2) -equivariant Mahowald invariants. As a geometric application of our result, we prove a “10/8+4”-Theorem.

We prove our theorem by analyzing maps between certain finite spectra arising from B Pin ( 2 ) B\operatorname {Pin}(2) and various Thom spectra associated with it. To analyze these maps, we use the technique of cell diagrams, known results on the stable homotopy groups of spheres, and the j j -based Atiyah–Hirzebruch spectral sequence.

Publisher

American Mathematical Society (AMS)

Reference52 articles.

1. Clifford modules;Atiyah, M. F.;Topology,1964

2. On the nonexistence of elements of Hopf invariant one;Adams, J. F.;Bull. Amer. Math. Soc.,1958

3. [AHR] Matthew Ando, Michael J. Hopkins, and Charles Rezk, Multiplicative orientations of 𝐾𝑂-theory and the spectrum of topological modular forms, \url{https://faculty.math.illinois.edu/ mando/papers/koandtmf.pdf}, 2010.

4. 𝑝-compact groups as framed manifolds;Bauer, Tilman;Topology,2004

5. Root invariants in the Adams spectral sequence;Behrens, Mark;Trans. Amer. Math. Soc.,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relative genus bounds in indefinite four-manifolds;Mathematische Annalen;2024-01-10

2. Smooth Structures on Spin Manifolds in Four Dimensions;Manifolds III - Developments and Applications;2022-11-16

3. tmf–based Mahowald invariants;Algebraic & Geometric Topology;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3