Automorphic Galois representations and the inverse Galois problem for certain groups of type 𝐷_{𝑚}

Author:

Zenteno Adrián

Abstract

Let m m be an integer greater than three and \ell be an odd prime. In this paper we prove that at least one of the following groups: P Ω 2 m ± ( F s ) \mathrm {P}\Omega ^\pm _{2m}(\mathbb {F}_{\ell ^s}) , P S O 2 m ± ( F s ) \mathrm {PSO}^\pm _{2m}(\mathbb {F}_{\ell ^s}) , P O 2 m ± ( F s ) \mathrm {PO}_{2m}^\pm (\mathbb {F}_{\ell ^s}) , or P G O 2 m ± ( F s ) \mathrm {PGO}^\pm _{2m}(\mathbb {F}_{\ell ^s}) is a Galois group of Q \mathbb {Q} for infinitely many integers s > 0 s > 0 . This is achieved by making use of a slight modification of a group theory result of Khare, Larsen, and Savin, and previous results of the author on the images of the Galois representations attached to cuspidal automorphic representations of G L 2 m ( A Q ) \mathrm {GL}_{2m}(\mathbb {A}_\mathbb {Q}) .

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Self-contragredient supercuspidal representations of 𝐺𝐿_{𝑛};Adler, J. D.;Proc. Amer. Math. Soc.,1997

2. S. Arias-de-Reyna and L. Dieulefait, Automorphy of 𝐺𝐿₂⊗𝐺𝐿_{𝑛} in the self-dual case, arXiv:1611.06918v2.

3. Compatible systems of symplectic Galois representations and the inverse Galois problem, II: Transvections and huge image;Arias-de-Reyna, Sara;Pacific J. Math.,2016

4. American Mathematical Society Colloquium Publications;Arthur, James,2013

5. Potential automorphy and change of weight;Barnet-Lamb, Thomas;Ann. of Math. (2),2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3