A formula for finding a potential from nodal lines

Author:

McLaughlin Joyce R.,Hald Ole H.

Abstract

In this announcement we consider an eigenvalue problem which arises in the study of rectangular membranes. The mathematical model is an elliptic equation, in potential form, with Dirichlet boundary conditions. We have shown that the potential is uniquely determined, up to an additive constant, by a subset of the nodal lines of the eigenfunctions. A formula is given which, when the additive constant is fixed, yields an approximation to the potential at a dense set of points. An estimate is presented for the error made by the formula.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. L. Friedlander, On certain spectral properties of very weak nonselfadjoint perturbations of selfadjoint operators, Trans. Moscow Math. Soc. 1 (1982), 185-218.

2. On the spectrum of the periodic problem for the Schrödinger operator;Friedlander, Leonid;Comm. Partial Differential Equations,1990

3. The perturbatively stable spectrum of a periodic Schrödinger operator;Feldman, Joel;Invent. Math.,1990

4. Solutions of inverse nodal problems;Hald, Ole H.;Inverse Problems,1989

5. \bysame, Inverse problems using nodal position data—uniqueness results, algorithms and bounds, Special Program on Inverse Problems (Proc Centre Math. Anal., Austral. Nat. Univ.), vol. 17, Austral. Nat. Univ., Canberra, 1988, pp. 32-59.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview of Inverse Problems;Encyclopedia of Applied and Computational Mathematics;2015

2. Assignment of Geometrical and Physical Parameters for the Confinement of Vibrations in Flexible Structures;Journal of Aerospace Engineering;2009-10

3. Numerical Computations;The Mathematica GuideBook for Numerics;2006

4. Inhomogeneous beams that may possess a prescribed polynomial second mode;Chaos, Solitons & Fractals;2001-01-04

5. Inverse Eigenvalue Problems;SIAM Review;1998-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3