How many zeros of a random polynomial are real?

Author:

Edelman Alan,Kostlan Eric

Abstract

We provide an elementary geometric derivation of the Kac integral formula for the expected number of real zeros of a random polynomial with independent standard normally distributed coefficients. We show that the expected number of real zeros is simply the length of the moment curve ( 1 , t , , t n ) (1,\,t,\,\ldots \,,t^{n}) projected onto the surface of the unit sphere, divided by π \pi . The probability density of the real zeros is proportional to how fast this curve is traced out. We then relax Kac’s assumptions by considering a variety of random sums, series, and distributions, and we also illustrate such ideas as integral geometry and the Fubini-Study metric.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference51 articles.

Cited by 253 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Upper estimates for the expected Betti numbers of random subcomplexes;Topology and its Applications;2024-10

2. Universal hard-edge statistics of non-Hermitian random matrices;Physical Review Research;2024-06-20

3. Probabilistic zero bounds of certain random polynomials;Journal of Applied Mathematics, Statistics and Informatics;2024-05-01

4. Exponential concentration for the number of roots of random trigonometric polynomials;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-05-01

5. Random analytic functions with a prescribed growth rate in the unit disk;Canadian Journal of Mathematics;2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3