Symbolic dynamics and Markov partitions

Author:

Adler Roy

Abstract

The decimal expansion of real numbers, familiar to us all, has a dramatic generalization to representation of dynamical system orbits by symbolic sequences. The natural way to associate a symbolic sequence with an orbit is to track its history through a partition. But in order to get a useful symbolism, one needs to construct a partition with special properties. In this work we develop a general theory of representing dynamical systems by symbolic systems by means of so-called Markov partitions. We apply the results to one of the more tractable examples: namely, hyperbolic automorphisms of the two dimensional torus. While there are some results in higher dimensions, this area remains a fertile one for research.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. Topological conjugacy of linear endomorphisms of the 2-torus;Adler, Roy;Trans. Amer. Math. Soc.,1997

2. Entropy, a complete metric invariant for automorphisms of the torus;Adler, R. L.;Proc. Nat. Acad. Sci. U.S.A.,1967

3. Memoirs of the American Mathematical Society, No. 98;Adler, Roy L.,1970

4. [Be] K. Berg, On the conjugacy problem for K-systems, Ph.D. Thesis, University of Minnesota, 1967.

5. Markov partitions for Axiom 𝐴 diffeomorphisms;Bowen, Rufus;Amer. J. Math.,1970

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic dynamics for pointwise hyperbolic systems on open regions;Ergodic Theory and Dynamical Systems;2024-09-10

2. A qualitative dynamic analysis of the relationship between tourism and human development;Humanities and Social Sciences Communications;2024-09-02

3. Dynamical independence: Discovering emergent macroscopic processes in complex dynamical systems;Physical Review E;2023-07-17

4. Binary factors of shifts of finite type;Ergodic Theory and Dynamical Systems;2023-04-18

5. Symbolic dynamics for Anosov families;Discrete and Continuous Dynamical Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3