The moment map for a multiplicity free action

Author:

Benson Chal,Jenkins Joe,Lipsman Ronald L.,Ratcliff Gail

Abstract

Let K be a compact connected Lie group acting unitarily on a finite-dimensional complex vector space V. One calls this a multiplicity-free action whenever the K-isotypic components of C [ V ] \mathbb {C}{\text {[}}V] are K-irreducible. We have shown that this is the case if and only if the moment map τ : V k \tau :V \to {\mathfrak {k}^{\ast } } for the action is finite-to-one on K-orbits. This is equivalent to a result concerning Gelfand pairs associated with Heisenberg groups that is motivated by the Orbit Method. Further details of this work will be published elsewhere.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. A geometric criterion for Gelfand pairs associated with the Heisenberg group;Benson, Chal;Pacific J. Math.,1997

2. On Gel′fand pairs associated with solvable Lie groups;Benson, Chal;Trans. Amer. Math. Soc.,1990

3. A commutativity condition for algebras of invariant functions;Carcano, Giovanna;Boll. Un. Mat. Ital. B (7),1987

4. Spectrum and multiplicities for restrictions of unitary representations in nilpotent Lie groups;Corwin, Lawrence;Pacific J. Math.,1988

5. Spherical functions in symmetric Riemann spaces;Gel′fand, I. M.;Doklady Akad. Nauk SSSR (N.S.),1950

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A geometric formula for multiplicities of -types of tempered representations;Transactions of the American Mathematical Society;2019-09-09

2. The orbit method and Gelfand pairs, associated with nilpotent Lie groups;Journal of Geometric Analysis;1999-12

3. A geometric criterion for Gelfand pairs associated with the Heisenberg group;Pacific Journal of Mathematics;1997-03-01

4. A theorem of the Wiener—Tauberian type forL 1(H n);Proceedings of the Indian Academy of Sciences - Section A;1996-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3