From Apollonius to Zaremba: Local-global phenomena in thin orbits

Author:

Kontorovich Alex

Abstract

We discuss a number of natural problems in arithmetic, arising in completely unrelated settings, which turn out to have a common formulation involving “thin” orbits. These include the local-global problem for integral Apollonian gaskets and Zaremba’s Conjecture on finite continued fractions with absolutely bounded partial quotients. Though these problems could have been posed by the ancient Greeks, recent progress comes from a pleasant synthesis of modern techniques from a variety of fields, including harmonic analysis, algebra, geometry, combinatorics, and dynamics. We describe the problems, partial progress, and some of the tools alluded to above.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference76 articles.

1. A proof of the positive density conjecture for integer Apollonian circle packings;Bourgain, Jean;J. Amer. Math. Soc.,2011

2. Uniform expansion bounds for Cayley graphs of 𝑆𝐿₂(𝔽_{𝕡});Bourgain, Jean;Ann. of Math. (2),2008

3. Sieving and expanders;Bourgain, Jean;C. R. Math. Acad. Sci. Paris,2006

4. Affine linear sieve, expanders, and sum-product;Bourgain, Jean;Invent. Math.,2010

5. Generalization of Selberg’s \frac{3}16 theorem and affine sieve;Bourgain, Jean;Acta Math.,2011

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Zaremba’s Conjecture for Geometric Sequences: An Algorithm;The American Mathematical Monthly;2024-04-02

2. Apollonian packings and Kac-Moody root systems;Transactions of the American Mathematical Society, Series B;2024-02-21

3. On length sets of subarithmetic hyperbolic manifolds;Mathematische Annalen;2023-09-02

4. On superintegral Kleinian sphere packings, bugs, and arithmetic groups;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-03-28

5. On dynamical gaskets generated by rational maps, Kleinian groups, and Schwarz reflections;Conformal Geometry and Dynamics of the American Mathematical Society;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3