On rank 3 quadratic equations of projective varieties

Author:

Park Euisung

Abstract

Let X P r X \subset \mathbb {P}^r be a linearly normal variety defined by a very ample line bundle L L on a projective variety X X . Recently it is shown by Kangjin Han, Wanseok Lee, Hyunsuk Moon, and Euisung Park [Compos. Math. 157 (2021), pp. 2001–2025] that there are many cases where ( X , L ) (X,L) satisfies property Q R ( 3 ) \mathsf {QR} (3) in the sense that the homogeneous ideal I ( X , L ) I(X,L) of X X is generated by quadratic polynomials of rank 3 3 . The locus Φ 3 ( X , L ) \Phi _3 (X,L) of rank 3 3 quadratic equations of X X in P ( I ( X , L ) 2 ) \mathbb {P}\left ( I(X,L)_2 \right ) is a projective algebraic set, and property Q R ( 3 ) \mathsf {QR} (3) of ( X , L ) (X,L) is equivalent to that Φ 3 ( X ) \Phi _3 (X) is nondegenerate in P ( I ( X ) 2 ) \mathbb {P}\left ( I(X)_2 \right ) .

In this paper we study geometric structures of Φ 3 ( X , L ) \Phi _3 (X,L) such as its minimal irreducible decomposition. Let Σ ( X , L ) = { ( A , B ) A , B P i c ( X ) ,   L = A 2 B ,   h 0 ( X , A ) 2 ,   h 0 ( X , B ) 1 } . \begin{equation*} \Sigma (X,L) \!=\! \{ (A,B) \mid A,B \!\in \! {Pic}(X),~L \!=\! A^2 \otimes B,~h^0 (X,A) \!\geq \! 2,~h^0 (X,B) \!\geq \! 1 \}. \end{equation*} We first construct a projective subvariety W ( A , B ) Φ 3 ( X , L ) W(A,B) \subset \Phi _3 (X,L) for each ( A , B ) (A,B) in Σ ( X , L ) \Sigma (X,L) . Then we prove that the equality Φ 3 ( X , L )   =   ( A , B ) Σ ( X , L ) W ( A , B ) \begin{equation*} \Phi _3 (X,L) ~=~ \bigcup _{(A,B) \in \Sigma (X,L)} W(A,B) \end{equation*} holds when X X is locally factorial. Thus this is an irreducible decomposition of Φ 3 ( X , L ) \Phi _3 (X,L) when P i c ( X ) {Pic} (X) is finitely generated and hence Σ ( X , L ) \Sigma (X,L) is a finite set. Also we find a condition that the above irreducible decomposition is minimal. For example, it is a minimal irreducible decomposition of Φ 3 ( X , L ) \Phi _3 (X,L) if P i c ( X ) {Pic}(X) is generated by a very ample line bundle.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. Canonical curves and quadrics of rank 4;Arbarello, Enrico;Compositio Math.,1981

2. On the factoriality of Cox rings;Arzhantsev, I. V.;Mat. Zametki,2009

3. Homogeneous coordinates for algebraic varieties;Berchtold, Florian;J. Algebra,2003

4. Ideals of varieties parameterized by certain symmetric tensors;Bernardi, Alessandra;J. Pure Appl. Algebra,2008

5. Graduate Texts in Mathematics;Eisenbud, David,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3