In the present paper, we deepen the works of L. Abatangelo, V. Felli, L. Hillairet and C. Léna on the asymptotic estimates of the eigenvalue variation under removal of segments from the domain in
R
2
\mathbb {R}^2
. We get a sharp asymptotic estimate when the eigenvalue is simple and the removed segment is tangent to a nodal line of the associated eigenfunction. Moreover, we extend their results to the case when the eigenvalue is not simple.