On the 𝑝-rank of curves

Author:

Terzİ Sadik

Abstract

In this paper, we are concerned with the computations of the p p -rank of curves in two different setups. We first work with complete intersection varieties in P n  for  n 2 \mathbf {P}^n \text { for } n\ge 2 and compute explicitly the action of Frobenius on the top cohomology group. In case of curves and surfaces, this information suffices to determine if the variety is ordinary. Next, we consider curves on more general surfaces with p g ( S ) = 0 = q ( S ) p_g(S) = 0 = q(S) such as Hirzebruch surfaces and determine p p -rank of curves on Hirzebruch surfaces.

Publisher

American Mathematical Society (AMS)

Reference15 articles.

1. Hasse-Witt and Cartier-Manin matrices: a warning and a request;Achter, Jeffrey D.,[2019] \copyright2019

2. Graduate Studies in Mathematics;Cox, David A.,2011

3. Fermat curves over finite fields;García, A.;J. Number Theory,1988

4. Graduate Texts in Mathematics, No. 52;Hartshorne, Robin,1977

5. Holomorphic differentials of generalized Fermat curves;Hidalgo, Rubén A.;J. Number Theory,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3