On Dancer’s conjecture for stable solutions with sign-changing nonlinearity

Author:

Liu Yong,Wang Kelei,Wei Juncheng,Wu Ke

Abstract

We establish a Liouville type result for stable solutions for a wide class of second order semilinear elliptic equations in R n \mathbb {R}^{n} with sign-changing nonlinearity f f . Under the hypothesis that the equation does not have any nonconstant one dimensional stable solution, and a further nondegeneracy condition of f f at its zero points, we show that in any dimension, stable solutions of the equation must be constant. This partially answers a question raised by Dancer.

Publisher

American Mathematical Society (AMS)

Reference33 articles.

1. Entire solutions of semilinear elliptic equations in 𝐑³ and a conjecture of De Giorgi;Ambrosio, Luigi;J. Amer. Math. Soc.,2000

2. Further qualitative properties for elliptic equations in unbounded domains;Berestycki, Henri;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),1997

3. Reaction-diffusion equations in the half-space;Berestycki, Henri;Ann. Inst. H. Poincar\'{e} C Anal. Non Lin\'{e}aire,2022

4. Henri Berestycki and Cole Graham, The steady states of positive reaction-diffusion equations with Dirichlet boundary conditions, arXiv:2309.16642, 2023.

5. Is there failure of the inverse function theorem?;Brezis, Haim,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3