On the honeycomb conjecture for a class of minimal convex partitions

Author:

Bucur Dorin,Fragalà Ilaria,Velichkov Bozhidar,Verzini Gianmaria

Abstract

We prove that the planar hexagonal honeycomb is asymptotically optimal for a large class of optimal partition problems, in which the cells are assumed to be convex, and the criterion is to minimize either the sum or the maximum among the energies of the cells, the cost being a shape functional which satisfies a few assumptions. They are: monotonicity under inclusions; homogeneity under dilations; a Faber-Krahn inequality for convex hexagons; a convexity-type inequality for the map which associates with every n N n \in \mathbb {N} the minimizers of F F among convex n n -gons with given area. In particular, our result allows us to obtain the honeycomb conjecture for the Cheeger constant and for the logarithmic capacity (still assuming the cells to be convex). Moreover, we show that, in order to get the conjecture also for the first Dirichlet eigenvalue of the Laplacian, it is sufficient to establish some facts about the behaviour of λ 1 \lambda _1 among convex pentagons, hexagons, and heptagons with prescribed area.

Funder

European Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. A multiphase shape optimization problem for eigenvalues: qualitative study and numerical results;Bogosel, Beniamin;SIAM J. Numer. Anal.,2016

2. Numerical simulations for nodal domains and spectral minimal partitions;Bonnaillie-Noël, Virginie;ESAIM Control Optim. Calc. Var.,2010

3. Existence results for some optimal partition problems;Bucur, Dorin;Adv. Math. Sci. Appl.,1998

4. A Faber-Krahn inequality for the Cheeger constant of 𝑁-gons;Bucur, Dorin;J. Geom. Anal.,2016

5. An optimal partition problem for eigenvalues;Cafferelli, L. A.;J. Sci. Comput.,2007

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Cheeger problem in abstract measure spaces;Journal of the London Mathematical Society;2023-12-26

2. The nonlocal isoperimetric problem for polygons: Hardy–Littlewood and Riesz inequalities;Mathematische Annalen;2023-08-02

3. Mean-to-max ratio of the torsion function and honeycomb structures;Calculus of Variations and Partial Differential Equations;2023-07-17

4. Dimensional lower bounds for contact surfaces of Cheeger sets;Journal de Mathématiques Pures et Appliquées;2022-01

5. Asymptotic Optimality of the Triangular Lattice for a Class of Optimal Location Problems;Communications in Mathematical Physics;2021-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3