The finiteness threshold width of lattice polytopes

Author:

Blanco M.,Haase C.,Hofmann J.,Santos F.

Abstract

In each dimension d d there is a constant w ( d ) N w^\infty (d)\in \mathbb {N} such that for every n N n\in \mathbb {N} all but finitely many lattice d d -polytopes with n n lattice points have lattice width at most w ( d ) w^\infty (d) . We call w ( d ) w^\infty (d) the finiteness threshold width in dimension d d and show that d 2 w ( d ) O ( d 4 / 3 ) d-2 \le w^\infty (d)\le O^*\left ( d^{4/3}\right ) .

Blanco and Santos determined the value w ( 3 ) = 1 w^\infty (3)=1 . Here, we establish w ( 4 ) = 2 w^\infty (4)=2 . This implies, in particular, that there are only finitely many empty 4 4 -simplices of width larger than two. (This last statement was claimed by Barile et al. in [Proc. Am. Math. Soc. 139 (2011), pp. 4247–4253], but we have found a gap in their proof.)

Our main tool is the study of d d -dimensional lifts of hollow ( d 1 ) (d-1) -polytopes.

Publisher

American Mathematical Society (AMS)

Reference32 articles.

1. Smooth Fano polytopes with many vertices;Assarf, Benjamin;Discrete Comput. Geom.,2014

2. Notions of maximality for integral lattice-free polyhedra: the case of dimension three;Averkov, Gennadiy;Math. Oper. Res.,2017

3. Maximal lattice-free polyhedra: finiteness and an explicit description in dimension three;Averkov, Gennadiy;Math. Oper. Res.,2011

4. On empty lattice simplices in dimension 4;Barile, Margherita;Proc. Amer. Math. Soc.,2011

5. The flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces;Banaszczyk, Wojciech;Math. Oper. Res.,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Difference Between Families of Weakly and Strongly Maximal Integral Lattice-Free Polytopes;Springer Proceedings in Mathematics & Statistics;2022

2. Blowups with log canonical singularities;Geometry & Topology;2021-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3