Tight closure test ideals have been central to the classification of singularities in rings of characteristic
p
>
0
p>0
, and via reduction to characteristic
p
>
0
p>0
, in equal characteristic 0 as well. Their properties and applications have been described by Schwede and Tucker [Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012]. In this paper, we extend the notion of a test ideal to arbitrary closure operations, particularly those coming from big Cohen-Macaulay modules and algebras, and prove that it shares key properties of tight closure test ideals. Our main results show how these test ideals can be used to give a characteristic-free classification of singularities, including a few specific results on the mixed characteristic case. We also compute examples of these test ideals.