The Apollonian structure of Bianchi groups

Author:

Stange Katherine

Abstract

We study the orbit of R ^ \widehat {\mathbb {R}} under the Möbius action of the Bianchi group P S L 2 ( O K ) \rm {PSL}_2(\mathcal {O}_K) on C ^ \widehat {\mathbb {C}} , where O K \mathcal {O}_K is the ring of integers of an imaginary quadratic field K K . The orbit S K {\mathcal {S}}_K , called a Schmidt arrangement, is a geometric realisation, as an intricate circle packing, of the arithmetic of K K . We give a simple geometric characterisation of certain subsets of S K {\mathcal {S}}_K generalizing Apollonian circle packings, and show that S K {\mathcal {S}}_K , considered with orientations, is a disjoint union of all primitive integral such K K -Apollonian packings. These packings are described by a new class of thin groups of arithmetic interest called K K -Apollonian groups. We make a conjecture on the curvatures of these packings, generalizing the local-to-global conjecture for Apollonian circle packings.

Funder

National Security Agency

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference45 articles.

1. Hausdorff dimension and Kleinian groups;Bishop, Christopher J.;Acta Math.,1997

2. A proof of the positive density conjecture for integer Apollonian circle packings;Bourgain, Jean;J. Amer. Math. Soc.,2011

3. On the local-global conjecture for integral Apollonian gaskets;Bourgain, Jean;Invent. Math.,2014

4. Irreducible Apollonian configurations and packings;Butler, Steve;Discrete Comput. Geom.,2010

5. Carus Mathematical Monographs;Conway, John H.,1997

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Links in orthoplicial Apollonian packings;European Journal of Combinatorics;2024-12

2. A Geometric Study of Circle Packings and Ideal Class Groups;Discrete & Computational Geometry;2024-03-27

3. Circle packings from tilings of the plane;Journal of Geometry;2024-03-17

4. Apollonian packings and Kac-Moody root systems;Transactions of the American Mathematical Society, Series B;2024-02-21

5. On superintegral Kleinian sphere packings, bugs, and arithmetic groups;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3