Tame circle actions

Author:

Tolman Susan,Watts Jordan

Abstract

In this paper, we consider Sjamaar’s holomorphic slice theorem, the birational equivalence theorem of Guillemin and Sternberg, and a number of important standard constructions that work for Hamiltonian circle actions in both the symplectic category and the Kähler category: reduction, cutting, and blow-up. In each case, we show that the theory extends to Hamiltonian circle actions on complex manifolds with tamed symplectic forms. (At least, the theory extends if the fixed points are isolated.)

Our main motivation for this paper is that the first author needs the machinery that we develop here to construct a non-Hamiltonian symplectic circle action on a closed, connected six-dimensional symplectic manifold with exactly 32 fixed points; this answers an open question in symplectic geometry. However, we also believe that the setting we work in is intrinsically interesting and elucidates the key role played by the following fact: the moment image of e t x e^t \cdot x increases as t R t \in \mathbb {R} increases.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. The moment map and equivariant cohomology;Atiyah, M. F.;Topology,1984

2. D. Burns, V. Guillemin, and E. Lerman, Kähler cuts, preprint (2002), arXiv:math/021206.

3. Variation of geometric invariant theory quotients;Dolgachev, Igor V.;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1998

4. On the variation in the cohomology of the symplectic form of the reduced phase space;Duistermaat, J. J.;Invent. Math.,1982

5. Mathematical Surveys and Monographs;Guillemin, Victor,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Hamiltonian Actions With Fewer Isolated Fixed Points;International Mathematics Research Notices;2022-02-28

2. Non-Hamiltonian actions with isolated fixed points;Inventiones mathematicae;2017-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3