Comparative assessment of poly (D,L-lactide-co-glycolide) nanoparticles modified by either cetyltrimethylammonium bromide or chitosan for plasmid DNA adsorption

Author:

Doolaanea Abd Almonem,Mansor Nur ‘Izzati,Nor Nurul Hafizah Mohd,Shafri Mohd Affendi Bin Mohd,Sukmasari Susi,Mohamed Farahidah

Abstract

Purpose: To evaluate poly (D,L-lactide-co-glycolide) PLGA nanoparticles modified by cetyltrimethyl ammonium bromide (CTAB) or chitosan for plasmid DNA adsorption.Methods: PLGA nanoparticles were prepared by solvent diffusion method and modified by including CTAB in the aqueous (F1) or oil phase (F2), or by including low (F3) or medium (F4) molecular weight chitosan. The nanoparticles were  characterised by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), as well as for cell toxicity, cell uptake and  transfection.Results: CTAB failed to confer positive charge on the nanoparticles. CTAB desorbed easily from F1 surface. This resulted in negative zeta potential, increased  cytotoxicity as well as decreased cell uptake and transfection. In F2, CTAB was located mainly in PLGA matrix, resulting in negative charge with decreased cytotoxicity, and increased cell uptake and transfection compared to F1. On the other hand, chitosan-modified nanoparticles (F3 and F4) showed stronger interaction between chitosan and PLGA, leading to positively-charged particles, decreased cytotoxicity, as well as increased cell uptake and transfection. Amongst the four formulations, F4 exhibited the highest transfection.Conclusion: These results should aid in understanding how PLGA nanoparticles are modified by CTAB and chitosan. Modification with chitosan yields PLGA  nanoparticles with higher DNA adsorption and transfection with lower cytotoxicity.Keywords: Chitosan, cetyltrimethyl ammonium bromide (CTAB), Nanoparticle, Poly (D,L-lactide-coglycolide) PLGA, Plasmid DNA adsorption, Gene therapy

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3