An efficient synthetic route, characterization and antimicrobial evaluation of Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes

Author:

Sani Salihu,Tajo Siraj Ibrahim,Atiku Kurawa Mukhtar,Nadiah Abdul Halim Siti

Abstract

ABSTRACT. The synthesis of Schiff base compound derived from 2-hydroxy-3-methoxybenzaldehyde and o-phenylenediamine via solvent-assisted mechanochemical synthesis in the presence of a small amount of dimethylformamide as liquid-assisted solvent was reported. The Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes were synthesized and characterized by powder x-ray diffraction, infra-red spectroscopy, differential scanning colorimetry, thermogrametric analysis, energy dispersive X-ray analysis and CHNS/O macro-analysis. According to infrared spectral analysis, a strong band in the spectra of Schiff base at 1617 cm-1 was assigned to the azomethine v(C=N) stretching vibration. In the complexes, it shifted to lower frequency regions, indicating the formation of desired compounds. The DSC thermogram of Schiff base showed a single sharp peak at 158 oC, which is attributed to the melting or the phase transition. As revealed by TGA, the complexes were obtained as solid compounds containing some amounts of water molecules. The powder-XRD analysis showed that the patterns of the synthesized compounds were different from the starting materials, indicating that the starting constituents were changed into product. The antimicrobial activity results for selected bacteria and fungi revealed that complexes have higher activity than the Schiff base. Furthermore, the synthesized compounds were found to be more effective against fungal isolates than those of bacteria.     KEY WORDS: Schiff base, Solvent-assisted mechanochemistry, Azomethine, Complexes Bull. Chem. Soc. Ethiop. 2022, 36(4), 801-813.                                                               DOI: https://dx.doi.org/10.4314/bcse.v36i4.7                                                        

Publisher

African Journals Online (AJOL)

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3