A study on the development of scaffold fabrication using citric acid polyester – nanohydroxyapatite composite

Author:

Indira R.,Jaisankar V.,C. Vella Durai S.

Abstract

ABSTRACT. Nano hydroxyapatite (n-HAp) and its composites have shown a great development in the field of tissue regeneration and in controlled drug delivery due to its good biocompatibility and bioactivity behavior. Furthermore, HAp-based nanocomposites enhance mechanical properties. These synthetic HAp nanocomposites can also be tailored to fabricate scaffold with controlled porosity which facilitate the growth of the cell in the field of tissue engineering. In this paper, we focus on the synthesis of nano hydroxyapatite (n-HAp) by sol-gel method. The synthesized nano powders were calcined at 500 oC and characterized by FT-IR, XRD and TEM. We have also described the synthesis of citric acid-based polyester by melt polycondensation method without adding catalyst. The monomers used were citric acid, 1,6-hexane diol and sebacic acid. The corresponding synthesized n-HAp/polyester composite have potential application in soft tissue engineering. The structures of polyester and its nanocomposite were studied by FT-IR and 1H NMR spectral studies. The thermal and mechanical properties of polyester, composites and cytotoxicity activity (MTT assay) using vero cells were also studied. Porous scaffold of the nano HAp/Polyester was fabricated by solvent-casting particulate leaching technique which is useful in the development of tissue engineering applications. SEM and TEM studies were carried out for nano HAp, polyester, composites and scaffold.   KEY WORDS: Cytotoxicity, Polycondensation, Sol-gel, Solvent-casting, Tissue engineering Bull. Chem. Soc. Ethiop. 2022, 36(4), 923-934.                                                                DOI: https://dx.doi.org/10.4314/bcse.v36i4.17                                                      

Publisher

African Journals Online (AJOL)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3