Competence kinetic and thermodynamic studies between natural bio-adsorbent green microalgae and synthetic adsorbent magnetic nanoparticles for copper(II) ion in water

Author:

Ibrahim Hamadamin Shireen,Saaduldeen Anwer Sewgil,Hassan Sdiq Kwestan,Mohsin Abdulkareem Parween

Abstract

ABSTRACT. The present work investigated the kinetic and thermodynamic study of adsorbents to remove copper ions from aqueous solutions and compared the efficiency between the natural microalgae bio-adsorbent chlorella species (sp.) and synthetic magnetic nanoparticles. All materials synthesized and characterized by Fourier transform infrared (FT-IR), scanning electron microscope (SEM), energy dispersive X-ray (EDX). The highest Cu+2 ion adsorption for the copper solution at 100 mg/L was 57.2%, while at pH 8 it was 59.7%. The more efficient adsorbent for Cu+2 acquired by chlorella was 0.24 mg/g. The second-order kinetic model is fitted, the activation energy (Ea) for the three adsorbents; Chlorella, Fe3O4, (Fe3O4 coated with SiO2) were 95.24, 40.69, 20.39 kJ/mol, respectively indicating the adsorption process is slower than the magnetic nanoparticles. Enthalpy activation changes (ΔH#) were endothermic and showed that the adsorption of the Cu+2 on the chlorella was chemisorption and on the magnetic nanoparticles was physisorption. Entropy change of activation (ΔS#), and activation Gibbs free energy change (ΔG#) showed that adsorption process of Cu+2 on the three adsorbents was feasible and spontaneous in temperature range 293-313 K. The novelty of this work is to determine the type and efficiency of adsorption of algae and nanoparticles.   KEY WORDS: Adsorption, Kinetic models, Thermodynamic studies, Chlorella species, Magnetic nanoparticle, Efficiency percent Bull. Chem. Soc. Ethiop. 2023, 37(1), 183-196.                                                                DOI: https://dx.doi.org/10.4314/bcse.v37i1.15                                                      

Publisher

African Journals Online (AJOL)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3