Performance Evaluation of Training Algorithms in Backpropagation Neural Network Approach to Blast-Induced Ground Vibration Prediction

Author:

Arthur C. K.,Temeng V. A.,Ziggah Y. Y.

Abstract

Abstract Backpropagation Neural Network (BPNN) is an artificial intelligence technique that has seen several applications in many fields of science and engineering. It is well-known that, the critical task in developing an effective and accurate BPNN model depends on an appropriate training algorithm, transfer function, number of hidden layers and number of hidden neurons. Despite the numerous contributing factors for the development of a BPNN model, training algorithm is key in achieving optimum BPNN model performance. This study is focused on evaluating and comparing the performance of 13 training algorithms in BPNN for the prediction of blast-induced ground vibration. The training algorithms considered include: Levenberg-Marquardt, Bayesian Regularisation, Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton, Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Fletcher-Powell Conjugate Gradient, Polak-Ribiére Conjugate Gradient, One Step Secant, Gradient Descent with Adaptive Learning Rate, Gradient Descent with Momentum, Gradient Descent, and Gradient Descent with Momentum and Adaptive Learning Rate. Using ranking values for the performance indicators of Mean Squared Error (MSE), correlation coefficient (R), number of training epoch (iteration) and the duration for convergence, the performance of the various training algorithms used to build the BPNN models were evaluated. The obtained overall ranking results showed that the BFGS Quasi-Newton algorithm outperformed the other training algorithms even though the Levenberg Marquardt algorithm was found to have the best computational speed and utilised the smallest number of epochs.   Keywords: Artificial Intelligence, Blast-induced Ground Vibration, Backpropagation Training Algorithms

Publisher

African Journals Online (AJOL)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3