Protective effect of syringaresinol on rats with diabetic nephropathy via regulation of Nrf2/HO-1 and TGF- β1/Smads pathways

Author:

Ji Lei,Zhong Xue,Xia Xingxing,Yu Wei,Qin Yuping

Abstract

Purpose: To investigate the protective role of syringaresinol in a rat model of diabetic nephropathy (DN). Methods: Streptozotocin was injected intraperitoneally into rats to establish the diabetic model. Streptozotocin-induced rats were orally administered syringaresinol, and pathological changes in kidneys were assessed using hematoxylin and eosin staining. Enzyme-linked immunosorbent assay (ELISA) was used to determine kidney injury indicators, 24-h urine proteins, blood urea nitrogen (BUN), and serum creatinine (SCR). Blood glucose was measured using a blood glucose meter, while levels of malonaldehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) in kidney were also measured using ELISA. Results: Pathological changes in the kidneys were observed in rats post-streptozotocin treatment. Administration of syringaresinol reduced the lesion degree, with improved pathological morphology in kidney. Syringaresinol administration significantly attenuated streptozotocin-increased levels of BUN, SCR, 24-h urine protein, and blood glucose (p < 0.01). Streptozotocin-induced oxidative stress, shown by enhanced MDA level and reduced levels of SOD, CAT, and GSH-PX, was reversed in rat kidneys following syringaresinol administration. However, the expression levels of nuclear factor erythropoietin- 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) proteins decreased, while transforming growth factor-beta 1 (TGF-β1) and signal transducer and transcriptional modulator (Smad) 2/3/7 proteins increased in rats post-streptozotocin treatment. Syringaresinol administration reversed the effects of streptozotocin on protein expression of Nrf2, HO-1, TGF-β1, and Smad 2/3/7. Conclusion: Syringaresinol exerted a protective effect against DN through activation of Nrf2 and inactivation of TGF-β1/Smad pathways. Thus, the compound can potentially be developed for management of diabetic nephropathy.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3