Rehmannioside A protects against high glucose-induced apoptosis and oxidative stress of renal tubular epithelial cells by inhibiting the MAPK pathway

Author:

Huai Lei,Yang Lili,Xu Qunhong,Wang Benyong

Abstract

Purpose: To investigate the effects and mechanism of rehmannioside A (ReA) on diabetic nephropathy (DN) progression. Methods: Various concentrations of glucose and ReA were added to HK2 cells, and cell viability was analyzed using the 3-(4,5)-dimethylthiahiazo(-2)-3,5 diphenytetrazoliumromide (MTT) assay. Cell apoptosis, caspase 3 activity, and expression levels of BAX, Bcl-2, and cleaved poly (ADP-ribose) polymerase were evaluated to assess the effect of ReA on cell apoptosis. The effect of ReA on oxidative stress was also evaluated by assessing superoxide dismutase, catalase, and malondialdehyde levels. Lactate dehydrogenase release and reactive oxygen species levels were also measured. Finally, activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 was determined by immunoblot technique. Results: ReA significantly enhanced the survival of HK2 cells induced with high glucose (HG). In addition, ReA suppressed apoptosis and inhibited oxidative stress of HK2 cells induced with HG (p < 0.05). ReA protected against HG-induced apoptosis and oxidative stress of renal tubular epithelial cells by inhibiting the MAPK pathway (p < 0.05). Conclusion: ReA is a potential as a therapeutic agent for DN; however, in vivo and clinical investigations are required to validate this assertion.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3