Experimental Investigation of Temperature Effects on Low Salinity Enzyme Enhanced Oil Recovery Process

Author:

Udoh Tinuola H.

Abstract

In this paper, the effect of temperature on low salinity brine and combined low salinity enzyme oil recovery processes in sandstone rock sample was experimentally investigated. The core flooding displacement tests were conducted with the injection of the enzyme in post-tertiary mode after secondary high salinity brine and tertiary low salinity brine injection processes. Effluents analyses of each of the flooding were carried out and used to evaluate the effect of temperature on rock-fluid interactions and enhanced oil recovery processes. The results showed that tertiary low salinity brine injection and post-tertiary enzyme injection increased recovery by 2.4-8.72% over the secondary high salinity brine flooding at 25 oC. Also, increase in oil recovery (0.57-13.18%) was observed with increase in the system temperature from 25 oC to 70 oC. Furthermore, the effluent of the 70 oC flooding was associated with the earliest low salinity brine ionic breakthrough front at 10 injected pore volume, while the 25 oC flooding breakthrough front occurred at 22 pore volume. However, no obvious effect of temperature on pH of the effluents was observed with all the floodings, but temperature effects were observed with the conductivity and ionic concentrations of all the effluents as evident by varied breakthrough times. Hence, the observed increased recovery in this study is attributable to combined effects of electric double-layer expansion, oil viscosity reduction and interfacial tension reduction. This novel study of the combined low salinity enzyme injection process is significant for the design of enzyme enhanced oil recovery processes. Keywords: Enhanced oil recovery, enzyme, sandstone, low salinity, core flooding, temperature.

Publisher

African Journals Online (AJOL)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3