Kinetics and equilibrium adsorption studies of chromium (VI) and iron (III) from aqueous solution systems using hydroxyapatite, activated carbon and their composites

Author:

Adegoke H.I.,Ashola M. O.,Audu M. F.

Abstract

Industrial effluents have become an environmental issue harming the ecosystem, remediation of these effluents is critical in order to mitigate some of this issue. Three adsorbents, activated carbon from sugarcane bagasse (ASB), hydroxyapatite (HAP), and their composites (ncpA), were prepared for the adsorption of Cr (VI) and Fe (III) from wastewater in this work. The hydroxyapatite was synthesized using the wet precipitation method, and the activated carbon was derived from sugarcane bagasse, resulting in a composite with a hydroxyapatite to activated carbon ratio of 1:1. The adsorbents surface and chemical properties were determined by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller 2 2 -1 (BET), and X-ray diffraction (XRD). The BET surface areas were 1.34 ± 0.04 m2/g and 26.4 ± 0.4 m2g4 for HAP and ASB respectively. The influence of initial concentration of metal ions, adsorbent dosage, pH, contact time and temperature on the adsorption process were investigated. Two isotherm models and different kinetic models were used in fitting the experimental data. The adsorption of Cr (VI) and Fe (III) fitted well into the Langmuir isotherm model with maximum monolayer adsorption capacities of 19.92 mg/g, 16.69 mg/g and 10.33 mg/g respectively for Cr (VI) and 113.64 mg/g, 113.64 mg/g and 107.54 mg/g respectively for Fe (III) removal onto HAP, ASB and ncpA respectively. The pseudo-second-order model that best suited the kinetic data was chemisorption-controlled, and this is referred to as the mechanism of the adsorption. Sum of square 2 error (SSE) and non-linear chi-square (ꭓ2 ) were used to further validate the mechanism.

Publisher

African Journals Online (AJOL)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3