Expression of mTOR conduction pathway in human osteosarcoma MG-63 cells and their stem cells, and the inhibitory effect of different doses of rapamycin

Author:

Wu Hao,Wang Xuelei,Cao Zhilin,Zheng Mingdi,Zhao Zhongyuan,Zhao Yuchi,Zhang Jianzhong,Zhang Jianzhong,Cheng Gong

Abstract

Purpose: To investigate the expressions of rapamycin target protein (mTOR) conduction pathway in human osteosarcoma MG-63 cells and their stem cells, and to examine the inhibitory effect of different doses of rapamycin.Methods: mTOR mRNA in osteosarcoma stem-like cells and human osteosarcoma MG-63 cells were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The cells were treated with different doses of rapamycin and divided into low dose group (0.5 mg), medium dose group (1.0 mg), high dose group (2.0 mg) and blank (control) group. Apoptosis and cell cycle of MG-63 cells were determined by flow cytometry, while proliferation of MG-63 cells up was assessed by CCK-8 kit.Results: mTOR in human osteosarcoma MG-63 cells was significantly lower than that in osteosarcoma stem-like cells. Compared with the control group, mRNA expression levels of mTOR in MG-63 cells and osteosarcoma stem-like cells were significantly decreased after treatment with different concentrations of rapamycin (p < 0.05). MG-63 cells treated with various doses of rapamycin exhibited a significant decrease in their proliferation, compared with control group, while only the high rapamycin concentration group exhibited a significant decrease in osteosarcoma stem-like cell proliferation (p < 0.05). Treatment with rapamycin in MG-63 cells and osteosarcoma stem-like cells resulted in a significant increase in apoptosis, prolonged G0/G1 phase and shortened S phase (p < 0.05).Conclusion: Rapamycin inhibits the expression of mTOR mRNA in osteosarcoma stem-like and MG-63 cells. It also inhibits the proliferation and cell cycle formation of osteosarcoma stem-like cells and MG-63 cells via mTOR signal pathway. These findings may provide a new target for the treatment of osteosarcoma.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3