Neuroprotective effects of delavatine A on LPS-induced activation of microglia in vitro and in a rat model of ischemia-reperfusion injury

Author:

Xing Huijuan,Sun Qiang

Abstract

Purpose: To investigate the neuroprotective effects of deloratine A on liposaccharide (LPS)-induced microglia activation in vitro and in a rat model of ischemia-reperfusion injury. Methods: LPS-induced microglial activation was successfully established in mouse microglia BV2 cell line. Then, the cells were randomly divided into model group, 2.5 μM delavatine A group, 5 μM delavatine A group, and 10 μM delavatine A group. The effect of delavatine A on the release of NO, TNF-α, IL-1β and IL-6 in BV2 cells was determined. In the vivo studies, 21 male Sprague Dawley (SD) rats were used to establish a rat model of ischemia-reperfusion injury, and effect of delavatine A on neural function and cerebral infarction area was determined. Results: The NO content was significantly higher in LPS-induced microglial activation model than in blank control, but it was significantly lower in the 3 delavatine A groups than in model group (p < 0.05). The expression levels of TNF-α, IL-1β, and IL-6 were significantly higher in model group than in blank control group, but they were significantly and dose-dependently lower in delavatine A groups than in model group (p < 0.05). In the in vivo rat studies, neural function score and cerebral infarction area in the model group were significantly higher than those in the sham group, while cerebral infarction area in delavatine A groups were significantly lower than that in the model group (p < 0.05). Conclusion: Delavatine A significantly reduces the inflammation associated with LPS-induced microglial activation, mitigates loss of neural function, and reduces cerebral infarction area in rats with ischemia-reperfusion injury. These findings may lead to the development of new neuroprotective drugs. Keywords: Delavatine A; LPS; Microglia activation; Ischemia-reperfusion injury; Neural function; Cerebral infarction area

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3