Fucosterol improves palmitic acid-induced oxidative stress, lipid droplet formation and insulin resistance in liver cells by mediating Keap1-Nrf2-lipocalin 13 axis

Author:

Xiong Zhekun,Gan Liming,Sun Chuntian,Zhang Hui,He Yanshan,Su Huixia,Zheng Yiyuan,Liao Fanglian

Abstract

Purpose: To determine the possible effects of fucosterol (FST) on non-alcoholic fatty liver disease (NAFLD), and the mechanisms involved. Methods: The NAFLD model was constructed using palmitic acid (PA) induction, and the expression of NF-E2-related factor 2 (Nrf2), lipocalin 13 (LCN13) and Keap1 were analyzed by immunoblot. The oxidative stress of hepatocytes was determined via ELISA assay. In addition, the role of FST on lipid content and metabolism were evaluated by Oil Red O staining and immunoblot, while the levels of p-AKT, p-IRS1, and p-PI3K were evaluated by immunoblot assay. Results: The data revealed that FST significantly increased the viability of PA-induced hepatocytes, and the expression levels of Nrf2 and LCN13 (p < 0.05). Fucosterol enhanced Keap1-Nrf2 mediated LCN13 expression, and alleviated PA-induced oxidative stress by contributing to Keap1-Nrf2-LCN13 axis. In addition, it significantly reduced (p < 0.05) lipid droplet formation, promoted lipid metabolism, and lowered insulin resistance by enhancing Keap1- Nrf2-LCN13 axis. Conclusion: Fucosterol regulates Keap1-Nrf2-mediated LCN13 to aid the ameliorate palmitic acid-induced oxidative stress, lipid droplet formation and insulin resistance in liver cells.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3