BCL9 enhances the development of cervical carcinoma by deactivating CPEB3/EGFR axis

Author:

Du Yi,Zhao Fen,Zhang Ni,Yu Guoxiao,Shi Lei,Li Juan

Abstract

Purpose: To investigate the differential expression of BCL9 in cervical carcinoma samples, analyze its biological functions in regulating malignant phenotypes of cervical carcinoma cells, and to explore its potential molecular mechanism.Methods: Expression levels of BCL9 in 58 pairs of cervical carcinoma tissues and paracancerous tissues were determined using quantitative real time-polymerase chain reaction (qRT-PCR). Kaplan- Meier curves were used to analyze the prognostic potential of BCL9 in cervical carcinoma. After knockdown using BCL9 by lentivirus transfection, proliferative and migratory changes in Siha and HeLa cells were determined by CCK-8, colony formation and Transwell assays. Cytoplasmic polyadenylation element binding protein 3 (CPEB3), the potential downstream target of BCL9, was confirmed via dualluciferase reporter assay. Western blot analyses were conducted to determine the protein levels of CPEB3, EGFR, AKT and p21 in Siha and HeLa cells with BCL9 knockdown. The co-regulation of BCL9 and CPEB3 on phenotypes of cervical carcinoma cell was investigated.Results: BCL9 was upregulated in cervical carcinoma tissues. The high level of BCL9 was predicted by the tumor size, advanced stage and poor prognosis. The knockdown of BCL9 significantly weakened proliferative and migratory abilities of Siha and HeLa cells (p < 0.05). CPEB3 was the downstream target of BCL9, and was lowly expressed in cervical carcinoma tissues. The knockdown of BCL9 upregulated CPEB3, and downregulated EGFR, AKT and p21 (p < 0.05). The knockdown of CPEB3 also reversed the influence of silenced BCL9 in regulating its proliferative and migratory abilities in cervical carcinoma cells (p < 0.05).Conclusion: BCL9 drives the deterioration of cervical carcinoma by inhibiting the CPEB3/EGFR axis.Thus, BCL9 may be a novel molecular target for cervical carcinoma treatment.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3