MiR-494-3p mediates oxaliplatin resistance of colorectal cancer cells via PTEN/AKT pathway

Author:

Yu Yongming,Wu Zhou,Shen Zhonglei,Xie Yangyang,Cao Yisheng,Zhu Jiangfan

Abstract

Purpose: To unravel the influence of miR-494-3p on the insensitivity of colorectal cancer (CRC) cells to oxaliplatin.Methods: The mRNA level of miR-494-3p in oxaliplatin-resistant HT-29 cells was evaluated with reverse transcript-polymerase chain reaction (RT-PCR). The cells were treated with miR-494-3p suppressor or mimic, and then apoptotic changes were determined flow cytometrically. Resistancerelated gene expressions were measured using RT-PCR and western blotting. In addition, in vivo mouse experiments were conducted.Results: MiR-494-3p expression in oxaliplatin-resistant HT-29 cells was much higher than that in parental HT-29 cells, accompanied by increased levels of MRP, P-gp, and AKT phosphorylation (p-AKT), and decreased phosphatase and tensin homolog (PTEN) (p < 0.001). The miR-494-3p mimic suppressed oxaliplatin-induced parental HT-29 cell apoptosis, while miR-494-3p inhibitor promoted oxaliplatin-resistant HT-29 cell apoptosis and decreased the levels of p-AKT, MRP and P-gp, while upregulating PTEN (p < 0.001). Furthermore, AKT inhibitor had similar effects as miR-494-3p inhibitor (p < 0.001). Experiments using nude mice demonstrated that inhibition of miR-494-3p accentuated the sensitivity of oxaliplatin-resistant HT-29 cells to oxaliplatin (p < 0.05).Conclusion: Suppression of miR-494-3p attenuates oxaliplatin insensitivity to CRC cells via a mechanism which may involve PTEN/AKT pathway. Therefore, miR-494-3p may be an effective target for overcoming drug resistance of CRC.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3