Methylbenzoxime as a therapeutic agent for glucocorticoid-induced osteoporosis in rats

Author:

Ding Mingcong,Wei Pandeng,Hu Xuchang,Yang Tongqun,Yang Mingxuan,Zhang Qian,Wan Lin

Abstract

Purpose: To investigate the effect of methylbenzoxime on dexamethasone-induced rat model of osteoporosis. Methods: Osteoporosis rat model was prepared by administration of dexamethasone to rats for sixty days. The rats were then divided into five groups of five animals each: normal control, untreated, and 2, 5 and 10 mg/kg treatment groups. All rats were administered dexamethasone for 60 days. Thereafter, rats in the three treatment groups received daily doses of 2, 5 or 10 mg/kg methylbenzoxime for 15 days, while rats in normal control and untreated groups were given equivalent volumes of normal saline in place of methylbenzoxime. After treatment, the rats were sacrificed, and the femur removed for histological assessment of pathological changes using H&E staining. Expressions of Wntn signalling pathway proteins in osteoblasts were assayed using reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot assays. Results: Methylbenzoxime inhibited osteoblast proliferation, as revealed from 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It increased the expression of osteoprotegerin and downregulated receptor activator for nuclear factor-kappa B ligand. Dexamethasone decreased the expression of Wnt signalling pathway proteins in osteoblasts. However, treatment of the dexamethasone-exposed osteoblasts with methylbenzoxime reversed the inhibition of expressions of Wnt signalling pathway proteins. In vivo studies showed that methylbenzoxime treatment mitigated dexamethasone-induced pathological features in femur. In osteoporotic rats, methylbenzoxime significantly up-regulated the expression of osteocalcin but down-regulated the level of collagen-type I fragments, relative to the untreated group. The effect was significant in the 5 and 10 mg/kg treatment groups, when compared with 2 mg/kg group. Conclusion: Methylbenzoxime prevents dexamethasone-induced osteoporosis in vitro and in rats. Therefore, it is a potential therapeutic agent for the management of osteoporosis.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3