Optimal Design of Hybrid Renewable Energy for Tanzania Rural Communities

Author:

Marcel Ester T,Mutale Joseph,Mushi Aviti T

Abstract

Abstract Rural communities in developing countries lack access to electricity due to high costs of grid extension. This paper proposes a hybrid system of renewable energy (HRES) as solution. The HRES consists of solar, wind, and battery energy storage (BES). The village called Ngw’amkanga in Shinyanga region of Tanzania, East Africa is selected as a case study. An iterative method to determine the size of wind and solar photovoltaic (PV) generation required assuming a project life of 25 years at minimum annualised cost of the system ( ) is proposed. The project life time is fixed on the life span of the main component, solar PV at 25 years. The iteration is undertaken to meet the energy demand ensuring the BES is charged throughout the year. The required BES has three days of autonomy, and a maximum battery depth of discharge 50%. At minimum ACS, the HRES comprises only solar PV and BES, due to insufficient wind at this site. The levelised cost of energy ( ) of the HRES is 27.18 p/kWh, paid by the users. This is cheaper than the grid connected small power producers of Tanzania as discussed in the paper. Keywords: Renewable energy; wind energy generation; solar photovoltaic; annualised cost of the system; levelised cost of energy

Publisher

African Journals Online (AJOL)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview of optimal operations of renewable energy power systems in microgrid and virtual power plants;Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources;2024

2. Overview of renewable energy power system dynamics;Modeling and Control Dynamics in Microgrid Systems with Renewable Energy Resources;2024

3. Developing a Laptop Power Adaptor for 12 V and 24 V Solar PV Source;2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia);2023-05-22

4. A review of renewable off-grid mini-grids in Sub-Saharan Africa;Frontiers in Energy Research;2023-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3