Modelling forest species using LiDar-derived metrics of forest canopy gaps

Author:

Lombard Leighton,Ismail Riyad,Poona Nitesh K

Abstract

LiDAR intensity and texture features have reported high accuracies for discriminating forest species, particularly with the utility of the random forest (RF) algorithm. To date, limited studies has utilized LiDAR-derived forest gap information to assist in forest species discrimination. In this study, LiDAR intensity and texture features were extracted from forest canopy gaps to discriminate Eucalyptus grandis and Eucalyptus dunnii within a forest plantation. Additionally, LiDAR intensity and texture information was extracted for both canopy gaps and forest canopy and utilized for species discrimination. Using LiDAR intensity and texture information extracted for both canopy gap and forest canopy, resulted in a model accuracy of 94.74% (KHAT = 0.88). Using only canopy gap information, the RF model obtained an overall accuracy of 90.91% (KHAT = 0.81). The results highlight the potential for using canopy gap information for commercial species discrimination and mapping.

Publisher

African Journals Online (AJOL)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the Geometry of Tree Trunks Using LiDAR Data;Forests;2024-02-16

2. Three-Dimensional Modeling and Visualization of Single Tree LiDAR Point Cloud Using Matrixial Form;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3