Effect of polysaccharide from the root of Bupleurum Chinese DC and Bupleurum scorzonerifolium Willd on hydrogen peroxide-induced myocardial apoptosis

Author:

Gong Jun-hui,Liu Xue-qing,Ouyang Wei-li,Zhu Hong-tao,Ding Xiao-jun,Tang Jian-feng,Zhao Jian-feng,Zhang You-ming

Abstract

Purpose: To investigate the protective effect of polysaccharide (BRP) from the root of Bupleurum Chinese DC. and Bupleurum scorzonerifolium Willd. on cardiomyocyte cells. Methods: Response surface methodology (RSM) based on Box-Behnken Design (BBD) was performed to optimize the extraction conditions for BRP. The effect of BRP on cardiomyocyte cell apoptosis was evaluated in H9c2 cells treated with hydrogen peroxide (H2O2). Cell viability was determined by CCK-8 assay, while oxidative stress levels in H9c2 cells, including lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT) and creatine kinase (CK) were determined using commercial kits following the manufacture’s instruction. mRNA expressions (caspase-3, caspase-8, caspase-9 and Fas) were determined by quantitative real time-polymerase chain reaction (RT-qPCR). Results: The obtained optimal extraction conditions for BRP was as follows: extraction time (1.43 h), ratio of water to the raw material (30 mL/g) and extraction times (2 times). BRP (200, 400, 600 and 800 μg/mL) significantly increased the cell viability of H2O2 induced H9c2 cells (p < 0.05, p < 0.01, p < 0.01, p < 0.01, respectively). BRP (200, 400 and 800 μg/mL) significantly decreased LDH and CK levels (p < 0.01, p < 0.01, p < 0.01, respectively). However, BRP increased levels of SOD (200, 400 and 800 μg/mL, p < 0.05) and CAT (400 and 800 μg/mL, p < 0.05) in H9c2 cells. BRP significantly downregulated mRNA expressions of Caspase-3, Caspase-8, Caspase-9 and Fas (200, 400 and 800 μg/mL, p < 0.01) in H9c2 cells induced by H2O2. Conclusion: BRP protects cardiomyocyte against apoptosis via inhibition of oxidative stress and mitochondria-mediated intrinsic apoptosis, and thus, may be potential therapeutic agent for the management of cardiovascular diseases. Keywords: Bupleurum Chinese, Bupleurum scorzonerifolium Willd., Polysaccharide, Cardiomyocyte, Apoptosis, H9c2 cell, Biochemical parameters

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3