LncRNA PFAL suppresses TNF-α-induced inflammation by upregulating miR-18a in WI-38 cells

Author:

Xie Yichun,Wang Hongqun

Abstract

Purpose: Pneumonia is a serious respiratory disease among children with high mortality and morbidity all over the world. Long non-coding RNAs have been proven to play a vital role in many inflammatory diseases including pneumonia. In the present study, the protective impact of lncRNA PFAL on cell viability, cell apoptosis and secretion of inflammatory cytokines, as well as the underlying molecular mechanism in TNF-α-induced inflammatory injury model of pneumonia were investigated.Methods: WI-38 cell line was treated with 20 ng/ml TNF-α to establish an inflammatory injury model of pneumonia. LncRNA PFAL or miR-18a was up- or down-regulated in the WI-38 cells by transfection procedure. Cell viability was assessed using CCK-8 assay, while the rate of cell apoptosis was measured by utilizing flow cytometry. The mRNA expression levels of lncRNA PFAL, miR-18a, apoptosis-related and JNK pathway genes were determined with RT-qPCR. Moreover, the production of inflammatory cytokines such as IL-6 and MCP-1 were detected by using Western blot analysis.Results: The results indicated that cell viability was significantly (P<0.05) reduced, while the rate of cell apoptosis was increased in the TNF-α-induced WI-38 cells. Also, TNF-α treatment enhanced the expression of inflammatory cytokines that included IL-6 and MCP-1 in WI-38 cells. Overexpression of PFAL suppressed the injury induced by TNF-α and miR-18a was positively regulated by PFAL. Moreover, the inhibition of miR-18a weakens the effect of PFAL overexpression in TNF-α-induced cell injury. Furthermore, PFAL and miR-18a were involved in the regulation of JNK pathway.Conclusion: Overexpression of PFAL suppresses TNF-α-induced WI-38 cell injury by up-regulating miR-18a via the inactivation of JNK signaling pathway. Keywords: Inflammation, JNK pathway, miR-18a, PFAL, Pneumonia, TNF-α

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3