Optimization of surface roughness in CNC end milling using response surface methodology and genetic algorithm

Author:

Sidda Reddy B,Suresh Kumar J,Vijaya Kumar Reddy K

Abstract

Pre-hardened steel (P20) is a widely used material in the production of moulds/dies due to less wear resistance and used for large components. In this study, minimization of surface roughness has been investigated by integrating design of experiment method, Response surface methodology (RSM) and genetic algorithm. To achieve the minimum surface roughness optimal conditions are determined. The experiments were conducted using Taguchi’s L50 orthogonal array in the design of experiments (DOE) by considering the machining parameters such as Nose radius (R), Cutting speed (V), feed (f), axial depth of cut (d) and radial depth of cut(rd). A predictive response surface model for surface roughness is developed using RSM. The response surface (RS) model is interfaced with the genetic algorithm (GA) to find the optimum machining parameter values.

Publisher

African Journals Online (AJOL)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3