Synthesis of Ag-Fe3O4 nanoparticles for degradation of methylene blue in aqueous medium

Author:

Saeed Muhammad,Usman Muhammad,Muneer Majid,Akram Nadia,Haq Atta ul,Tariq Muhammad,Akram Fiza

Abstract

Fe3O4 known as magnetite is one of the oxides of iron which plays a major role in various fields of sciences. Fe3O4 was synthesized by precipitation method using NH3.H2O, FeCl2.4H2O and FeCl3.6H2O as precursor materials. For synthesis of 5% Ag-Fe3O4, the green synthetic method was used for immobilization of Ag nanoparticles on Fe3O4 using leaves extract of Calotropis gigantea plant. The synthesized Fe3O4 and 5% Ag-Fe3O4 were employed as catalyst in degradation of methylene blue. The photo catalytic activity of Fe3O4 was remarkably enhanced by doping of Fe3O4 with Ag nanoparticles. Advanced instrumental techniques including XRD, EDX, TGA and SEM were used for characterization of synthesized particles. The immobilization of Ag on Fe3O4 enhanced the photo degradation of methylene blue from 40 to 72% at 40 °C which confirms that 5% Ag-Fe3O4 is an active catalyst for treatment of dye contaminated water. Ag-Fe3O4 exhibited almost same catalytic activity in two successive cycles.   Bull. Chem. Soc. Ethiop. 2020, 34(1), 123-134.  DOI: https://dx.doi.org/10.4314/bcse.v34i1.11

Publisher

African Journals Online (AJOL)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3