Author:
Tsegaye Fekadu,Taddesse Abi M.,Teju Endale,Aschalew Minbale
Abstract
Fe-Al-Zr ternary mixed oxides composite was synthesized via co-precipitation method for the removal Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. The as-synthesized materials were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscope hyphenated with energy dispersive X-ray diffraction (SEM-EDX) and Fourier transform infrared (FTIR) techniques. The pH at the point of zero charge (pHpzc) of the sorbent and effect of ionic strength on sorption were also determined. The batch tests were conducted to optimize the various sorption parameters such as pH, adsorbent dose, contact time, speed of agitation and initial metal concentration. The experimental results showed that the adsorbed amounts of Pb(II), Cd(II) and Cr(VI) tend to decrease with increase in pH. Freundlich isotherm model fits better the equilibrium data for the adsorbent. Kinetic data correlated better with both pseudo first order and pseudo second order kinetic models. The spontaneous nature of the adsorption process was also confirmed from thermodynamic grounds. The nanosized adsorbent exhibited an adsorption efficiency of 96.65%, 96.55% and 97.2% for Cd(II), Cr(VI) and Pb(II), respectively, at optimum condition. Experimental results showed that the nanocomposite was effective for the removal of the title heavy metals from aqueous solution.
Bull. Chem. Soc. Ethiop. 2020, 34(1), 105-121.
DOI: https://dx.doi.org/10.4314/bcse.v34i1.10
Publisher
African Journals Online (AJOL)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献