MAPK1 knockdown ameliorated immune and inflammatory abnormalities in a mouse model of refractory asthma

Author:

Lin Shuang,Yang Xiaohong

Abstract

Purpose: To evaluate the potential molecular mechanisms involved in refractory asthma in an animal model, and the potential therapeutic effect of MAPK1 knockdown on the disease.Methods: Eighteen female Institute of Cancer Research (ICR) mice, aged 8 - 10 weeks, were randomly divided into three groups: control, asthma model and refractory asthma, with 6 mice in each group. The expression of MAPK1 was knocked down in mice using an adenoviral vector. Subsequently, the methylation levels of MAPK1 promoter in mouse lung tissue were determined using methylation assays. Hematoxylin and eosin (H&E) staining and Periodic Acid-Schiff (PAS) staining were used to determine inflammatory and histological changes in lung tissues. Levels of immune cells were determined using flow cytometry, while Western blotting was used to measure the protein expression levels of ERK1/2, JNK, MEK1/2 and p38.Results: Methylation assay results show that mean methylation level of cg11335969 locus was significantly reduced in the refractory asthma mouse model (p < 0.05). The levels of IgG1 and IgM in refractory asthmatic mice were reduced after MAPK1 knockdown. There was a significantly reduced degree of lung lesions in mice (p < 0.05), as was reflected in effectively decreased histopathological changes. Protein levels of ERK1/2, JNK, MEK1/2 and p38, and the levels of neutrophils, dendritic cells, and macrophages were significantly decreased (p < 0.05).Conclusion: There is hypermethylated modification of MAPK1 at cg11335969 site in refractory asthma mouse model. Knockdown of MAPK1 attenuates inflammation and tissue damage, and reverses abnormal immune cell numbers in refractory asthma mice. Thus, MAPK1 inhibition may be a novel strategy for ameliorating immune abnormalities in refractory asthma.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3