Cardamonin suppresses glycolysis and induces oxidative stress by inhibiting PI3K/AKT/mTOR pathway in bladder cancer cells

Author:

Li Ping,Tang Chaopeng,Fu Dian,Xu Xiaofeng,Ge Jingping,Jia Ruipeng

Abstract

Purpose: To evaluate the effect and underlying mechanisms of action of cardamine on the progression of bladder cancer (BC).Methods: Human bladder epithelium immortalized cell line (SV-HUC-1) and human bladder cancer (BC) cell lines (T24 and UM-UC-3) were used in this investigation. They were treated with cardamine at concentrations of 0, 15, 30, 60 or 120 μmol/L. Cell viability was determined using cell counting kit 8(CCK-8) assay while 5-ethynyl-2'-deoxyuridine (Edu) assay was used to assess cell proliferation. Cell apoptosis as well as reactive oxygen species (ROS) accumulation were determined by flow cytometry whereas glucose uptake, adenosine triphosphate (ATP) level and lactate production were determined using their respective assay kits. Furthermore, the expression levels of nuclear factor level (erythroidderived 2)-like 2 (Nrf2), NAD(P)H, quinone oxidoreductase 1 (NQO1), protein kinase B (AKT), phosphorylated-AKT (p-AKT), phosphatidylinositol 3-kinase (PI3K), p-PI3K, mechanistic target of rapamycin kinase (mTOR) and p-mTOR were evaluated by western blot analysis.Results: Cardamine significantly reduced cell viability and inhibited cell proliferation in BC cells in a dose-dependent manner, but did not affect human normal cells. In addition, treatment with the compound induced apoptosis in BC cells; the higher the concentration, the higher the apoptosis level. Besides, cardamine administration suppressed aerobic glycolysis, and decreased the nuclear factor level (Nrf2) level, thereby increasing ROS production in a concentration-dependent manner.Furthermore, it blocked the activation of PI3K/AKT/mTOR signal cascade.Conclusion: Cardamine inhibits glycolysis and PI3K/AKT/mTOR pathway, and also promotes apoptosis as well as oxidative stress in BC cells. Thus, the compound is a potential therapeutic reagent for BC.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3