Author:
Jiri Z,Tazvivinga A,Greenfield R,Van Vuren JHJ
Abstract
This study investigated the use of an exotic fish species Oreochromis niloticus as a bio-indicator organism in active biomonitoring of Yellow Jacket and Mazowe rivers, Zimbabwe, receiving acid mine drainage from Iron Duke Mine. The Yellow Jacket River flows through Iron Duke Pyrite Mine while the Mazowe River passes through the Mazowe factory and estate shop that receives runoff from intensive agricultural activities. Active biomonitoring (ABM) exposures were conducted for 6 weeks in effluent-contaminated sections of the rivers during high flow, from February to March 2013. A set of biomarkers of exposure and effect (glutathione S-transferase, catalase and metallothioneins) were selected and their responses determined in O. niloticus liver, gills and muscle. We hypothesized that the increase in activities of GST, CAT and MT in exposed fish, in comparison to control fish, can be used to assess river water quality using O. niloticus. Biomarker expression was measured after 4 and 6 weeks and compared against control fish kept under laboratory conditions without contaminants. Concentrations of zinc, cadmium, chromium, nickel, lead, copper, manganese, arsenic and iron were measured in flowing water, riverbed sediments and muscle tissue of actively biomonitored O. niloticus. Key water quality parameters, including dissolved oxygen and conductivity, clearly showed a pollution gradient from Iron Duke Mine. Expression of CAT and GST was highest in the liver, compared to gills and muscles, after 4 and 6 weeks of exposure, and their expression was lower (p < 0.05) in control fish. The expression of the enzymes was not significantly different after 6 weeks compared to 4 weeks. Increased enzyme expressions at Site 1, which is upstream from Iron Duke Mine, were comparable to enzyme expressions at Sites 3, 4, 5 and 6, which correlated with increased zinc concentrations in the exposed fish muscle tissue. The general order of metal concentrations was sediments > water > fish, except for zinc, which had the highest bioconcentration factors. Using the GST, CAT and MT we concluded that Mazowe and Yellow Jacket rivers are contaminated and that these oxidative stress biomarkers can successfully be used in assessing pollution from point sources such as acid mine drainage, as well as diffuse sources of pollutants such as commercial agriculture.
Publisher
Academy of Science of South Africa
Subject
Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献