Data communications network for real-time industrial control systems

Author:

Nwazor Nkolika Ogechukwu,Audu Eliezar Elisha

Abstract

The advancements in network technologies and the evolution of the Internet of Things (IoT) have made supporting industrial control systems over probabilistic data networks promising. However, control systems’ communication over the traditional data networks is faced with problems of instability in feedback control and poor quality of performance due to time-varying data propagation delay. This paper presents two approaches that can enable real-time industrial control over non-deterministic computer networks allowing control system designers to take advantage of the existing communication infrastructures. The first approach is based on system-level interaction over two wires network called the collaboration network. The second approach is based on the implementation of the virtual local area network (VLAN). This method allows real-time control of industrial equipment or systems over IP-based networks while other computers are connected. Nodes providing real-time control services have the same PortID on the VLAN switch. This approach minimizes data traffic and reduces time-varying delay in system control over IP networks. The first approach was modeled and simulated using Proteus ISIS software. Two PIC16F877A microcontrollers were used to represent two nodes. CISCO packet tracer was used in the second approach to model and simulate IP-based control system communications over the traditional data network. Results indicate that the use of a two-wire collaborative network approach to a real-time control system is effective but requires an additional network alongside the main data traffic channel. VLAN, therefore, presents a more flexible approach that relies on the same infrastructures.

Publisher

African Journals Online (AJOL)

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Engineering (miscellaneous),Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of an IoT-Based Door Security System Using Reed Switch Sensor with RFID and Telegram Notification;2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE);2023-09-28

2. Design a Smartphone App of an Internet of Things-Based Monitoring System Potato Plants on Agricultural Land;2022 International Conference on Electrical Engineering, Computer and Information Technology (ICEECIT);2022-11-22

3. The Backoff in Intermediate Networks for a Real-Time System Embedded Ethernet;2022 Fifth College of Science International Conference of Recent Trends in Information Technology (CSCTIT);2022-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3