Transport of nitrate-containing groundwater to coastal areas through buried tunnel valleys, Denmark

Author:

Sandersen Peter B.EORCID,Kim HyojinORCID,Jacobsen RasmusORCID,Pedersen Jesper BORCID,Hansen Birgitte GORCID

Abstract

Nitrogen impact on the aquatic environment, including coastal areas, is too high in many countries worldwide, particularly in areas with intensive agriculture. Efficient mitigation initiatives demand that important pathways and the fate of nitrate in the hydrological cycle are known. In this study, we focus on groundwater nitrate contamination in two near-shore catchment areas in north-west Denmark. Groundwater in the area is mainly located in buried tunnel valleys, which are subsurface structures eroded by meltwater during Pleistocene glaciations in former glaciated areas. Groundwater samples from the aquifers inside the buried valleys reveal the presence of up to 120 mg/l nitrate down to 10 m below sea level and about 1 km down from the stream outlet towards the coast. We interpret the complex tunnel-valley infill to be responsible for the spatial heterogeneity of the groundwater geochemistry, where sandy geological windows create localised hydraulic pathways and complex redox structures. Groundwater and stream water chemistry in the study area clearly demonstrate the role of groundwater in nitrate transport within the catchment as well as the direct pathway to the coast bypassing the stream and riverine systems. Our results show that the buried tunnel valleys potentially contribute to submarine groundwater discharge and therefore could be responsible for a hitherto unaccounted input of nitrogen to the marine environment.

Publisher

Geological Survey of Denmark and Greenland

Subject

Geophysics,Geology,Atmospheric Science,Earth and Planetary Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3