Prototyping Non-holonomic Hovercraft for Path Planning and Obstacle Avoidance

Author:

Abro Ghulam -e-Mustafa,Anwar Ali Zain,Jabeen Bazgha

Abstract

— By definition, autonomous control systems are thesystems that sense the physical quantities from their environmentand may execute any dirty, difficult, dull and dangerous taskwithout any intervention. These systems are mostly used in thetransportation of large packages from one place to anotherautonomously by selecting the shortest path, accurate speed andobstacle avoidance. This paper describes the development offuzzy based PID control algorithm to tackle the dynamicconstraints of localization for proposed non-holonomichovercraft. Furthermore, in order to monitor the hovercraft thatwhether it is hovering in a familiar or strange environment;paper suggests the incorporation of digital image processingtechnique which will regularly correlate, the images beingcaptured by the prototype. Moreover, paper methodology alsoprovides the deployment way along with the interfacingtechniques of some configurable sensors, which will share theinformation related to the surroundings of hovercraft usinginternet of things (IoT).

Publisher

Sir Syed University of Engineering and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a Self-Tuning PID Controller for a Temperature Control System Using Fuzzy Logic;International Conference on Artificial Intelligence for Smart Community;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3