Empirical Analysis of Vulnerabilities in Blockchain-based Smart Contracts

Author:

Khan Dr. Kashif Mehboob,Zahid Ansha

Abstract

With the evolution of technology, blockchain a swiftly impending phenomenon i.e., "decentralized computing” is observed. The emergence of Smart Contracts (SC) has resulted in advancements in the application of blockchain technology. The Ethereum network’s computing capabilities and functionalities are founded on the basis of SC. A smart contract is a self-executing agreement between buyer and seller with the terms of the settlement between them, written directly as lines of code, existing across a distributed decentralized blockchain network. It is a decentralized software that runs on a blockchain autonomously, consistently, and publicly. Conversely, due to the complex semantics of fundamental domain-specific languages and their testability, constructing reliable and secure SC can be extremely difficult. SC might contain some vulnerabilities. Security vulnerabilities can originate from financial tribulations; there are a number of notorious events that specify blockchain SC could comprise numerous code-security vulnerabilities. Security and privacy of blockchain-based SC are very important, we must first identify their vulnerabilities before implementing them widely. Therefore, the purpose of this paper is to conduct a comprehensive experimental evaluation of two current security testing tools: Remix solidity static analysis plugin and Solium which are used for static analysis of SC. We have conducted an empirical analysis of SC for finding tangible and factual evidence, controlled by the scientific approach. The methodology’s first step is to gather all of the Ethereum SC and store them in a repository. The next step is to use the Remix solidity static analysis plugin and Solium to perform vulnerability assessments. The last step is to analyze the result of both tools and evaluate them on the basis of accuracy and effectiveness. The goal of this empirical analysis is to evaluate the two FOSS tools: Remix solidity static analysis plugin and Solium on the basis of accuracy and effectiveness. Some research questions were considered to reach the stated goal: What automated tools and frameworks are proposed in supporting the state-of-the-art empirical approach to SC vulnerability detection? How accurate are security analysis tools? And which tool has more accuracy rate? How effectively security analysis tools are detecting vulnerabilities in SC? And which is the most effective security analysis tool? We investigated the effectiveness and accuracy of security code analysis tools on Ethereum by testing them on a random sample of vulnerable contracts. The results indicate that the tools have significant discrepancies when it comes to certain security characteristics. In terms of effectiveness and accuracy, the Remix plugin outperformed and beat the other tool.

Publisher

Sir Syed University of Engineering and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective Tracing and Tracking of E-Waste using Blockchain Technology;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

2. A Blockchain-Based IoT-Enabled E-Waste Tracking and Tracing System for Smart Cities;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3