PVT Analysis and Behavioral Modeling of Doherty and Envelope Tracking RF ULP Power Amplifiers using 65 nm CMOS Technology

Author:

Akhter Muhammad Ovais,M. Amin Najam,Rashid Masud Aurangzeb

Abstract

This research encompasses both Process-Voltage-Temperature (PVT) considerations and behavioral modeling of two proposed Power Amplifier (PA) designs for wireless communication systems. Process variations, supply voltage changes, and temperature changes provide difficulties for the design and optimization of power amplifiers for wireless communication systems and may have a substantial influence on their effectiveness. PVT analysis and behavioral modeling have been conducted to address the aforementioned challenges and characterize the behavior and performance of the power amplifiers under real-world operating conditions. It investigates the impact of process variations, supply voltage variations, and temperature variations on the performance of the PAs. The insights gained from this analysis contribute to a deeper understanding of the power amplifiers' performance, efficiency, and suitability for specific wireless communication standards, laying the foundation for future advancements in RF power amplifier design. The first design focuses on a Doherty PA (DPA) tailored for low-power short-range applications complying with the IEEE Wireless Personal Area Network (WPAN) standard. The second design explores an Envelope Tracking (ET) supply bias control for low-power long-range applications conforming to the IEEE Wireless Local Area Network (WLAN) standard. By examining these factors, the research ensures that the PAs exhibit reliable and optimal performance under real-world operating conditions. The PVT corners show a change in gain of only 0.4 dB for DPA and 0.9 dB for ET PA. Furthermore, behavioral modeling is employed to characterize the power efficiency of the envelope tracking PA, along with the current efficiency and quotient current on the load current scale. These models provide valuable insights into the behavior and performance of the PAs at a higher level of abstraction. The results and findings contribute to a deeper understanding of the PA’s performance, efficiency, and suitability for specific wireless communication standards, laying the foundation for future advancements in RF power amplifier design.

Publisher

Sir Syed University of Engineering and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3