Application of the Photometric Theory of the Radiance Field in the Problems of Electron Scattering

Author:

Afanas’ev Victor P.1,Budak Vladimir1ORCID,Efremenko Dmitry S.2,Kaplya Pavel S.3

Affiliation:

1. Moscow Power Engineering Institute (MPEI)

2. German Aerospace Center (DLR)

3. Yandex LLC

Abstract

The physical model of the radiance field is similar in some aspects to the elementary particle transport theory under the assumptions of the classical mechanics. Disregarding the differences in the used nomenclatures, it can be shown that the transport equations for the radiance field are identical to those for the particle flux density. Since the end of the 19th century, both theories have been developing in parallel, thereby enriching each other. In other words, a breakthrough, which has been made in one theory, readily contributes to the significant progress in another one. Nowadays the accuracy achieved in the experiments with particles is close to the limit, which allows validating the relationships derived within the light scattering theory. Besides, the experiments with particles are free from uncertainties in the scattering medium, which are typical for atmospheric remote sensing applications. In this paper, a new algorithm is described, which is derived by analogies between these theories. It is applied for calculating the electron flux elastically scattered by plane-parallel layers of a solid with the strongly forward peaked phase functions. The calculations are compared against the experimental angular distributions of electrons, which are elastically reflected by the two-layer solid samples.

Publisher

Redakcia Zhurnala Svetotekhnika LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3